Possible Limits on Photon Propagation from Quantum Gravity and Space-time Foam

نویسنده

  • Fred C. Adams
چکیده

Many quantum gravity theories imply that the vacuum is filled with virtual black holes. This paper explores the process in which high energy photons interact with virtual black holes and decay into gravitons and photons of lower energy. The effect requires violation (or modification) of Lorentz invariance and implies that high energy photons cannot propagate over arbitrarily large distances. For the standard Planck mass and the likely form for the interaction cross section, this quantum foam limit becomes d∗ < 450 Mpc (Eγ/10 7GeV)−5. For quantum gravity theories that posit a lower Planck scale, the interaction rate is larger and the limit is stronger. This paper uses extant observations of gamma rays from cosmological sources to constrain this process for varying values of the Planck mass and a range of forms for the interaction cross sections. PACS Number: 12.60JV

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synchrotron Radiation from the Crab Nebula Discriminates between Models of Space-Time Foam

It has been argued by Jacobson, Liberati and Mattingly that synchrotron radiation from the Crab Nebula imposes a stringent constraint on any modification of the dispersion relations of the electron that might be induced by quantum gravity. We supplement their analysis by deriving the spectrum of synchrotron radiation from the coupling of an electrically-charged particle to an external magnetic ...

متن کامل

Phenomenological description of space - time foam

The expectation that it should not be possible to gain experimental insight on the structure of space-time at Planckian distance scales has been recently challenged by several studies. With respect to space-time fluctuations, one of the conjectured features of quantum-gravity foam, the experiments that have the best sensitivity are the ones which were originally devised for searches of the clas...

متن کامل

Fractal Quantum Space -Time

In this paper we calculated the spectral dimension of loop quantum gravity (LQG) using the scaling property of the area operator spectrum on spin-network states and using the scaling property of the volume and length operators on Gaussian states. We obtained that the spectral dimension of the spatial section runs from 1.5 to 3, and under particular assumptions from 2 to 3 across a 1.5 phase whe...

متن کامل

Distance Measurement and Wave Dispersion in a Liouville-String Approach to Quantum Gravity

Within a Liouville approach to non-critical string theory, we discuss space-time foam effects on the propagation of low-energy particles. We find an induced frequency-dependent dispersion in the propagation of a wave packet, and observe that this would affect the outcome of measurements involving low-energy particles as probes. In particular, the maximum possible order of magnitude of the space...

متن کامل

A phenomenological description of quantum-gravity-induced space-time noise

I propose a phenomenological description of space-time foam and discuss the experimental limits that are within reach of forthcoming experiments.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004